Selectively increasing the clearance of protein-bound uremic solutes.
نویسندگان
چکیده
BACKGROUND The toxicity of bound solutes could be better evaluated if we could adjust the clearance of such solutes independent of unbound solutes. This study assessed whether bound solute clearances can be increased while maintaining urea clearance constant during the extended hours of nocturnal dialysis. METHODS Nine patients on thrice-weekly nocturnal dialysis underwent two experimental dialysis treatments 1 week apart. The experimental treatments were designed to provide the same urea clearance while providing widely different bound solute clearance. One treatment employed a large dialyzer and high dialyzate flow rate (Qd) of 800 mL/min while blood flow (Qb) was 270 mL/min. The other treatment employed a smaller dialyzer and Qd of 300 mL/min while Qb was 350 mL/min. RESULTS Treatment with the large dialyzer and higher Qd greatly increased the clearances of the bound solutes p-cresol sulfate (PCS: 27±9 versus 14±6 mL/min) and indoxyl sulfate (IS: 26±8 versus 14±5 mL/min) without altering the clearance of urea (204±20 versus 193±16 mL/min). Increasing PCS and IS clearances increased the removal of these solutes (PCS: 375±200 versus 207±86 mg/session; IS: 201±137 versus 153±74 mg/session), while urea removal was not different. CONCLUSIONS The removal of bound solutes can thus be increased by raising the dialyzate flow and dialyzer size above the low levels sufficient to achieve target Kt/V(urea) during extended treatment. Selectively increasing the clearance of bound solutes provides a potential means to test their toxicity.
منابع مشابه
Release of uremic retention solutes from protein binding by hypertonic predilution hemodiafiltration.
Protein-bound uremic retention solutes accumulate in patients suffering from chronic kidney disease, and the removal of these solutes by hemodialysis is hampered. Therefore, we developed a dialysis technique where the protein-bound uremic retention solutes are removed more efficiently under high ionic strength. Protein-bound uremic solutes such as phenylacetic acid, indoxyl sulfate, and p-cresy...
متن کاملNumerous protein-bound solutes are cleared by the kidney with high efficiency
The kidney clears numerous solutes from the plasma; however, retention of these solutes causes uremic illness when the kidneys fail. We know remarkably little about which retained solutes are toxic and this limits our ability to improve dialysis therapies. To explore this, we employed untargeted mass spectrometry to identify solutes that are efficiently cleared by the kidney. High-resolution ma...
متن کاملThe effect of isohydric hemodialysis on the binding and removal of uremic retention solutes
BACKGROUND There is growing evidence that the accumulation of protein- bound uremic retention solutes, such as indoxyl sulfate, p-cresyl sulfate and kynurenic acid, play a role in the accelerated cardiovascular disease seen in patients undergoing chronic hemodialysis. Protein-binding, presumably to albumin, renders these solutes poor-dialyzable. We previously observed that the free fraction of ...
متن کاملIncreasing dialysate flow and dialyzer mass transfer area coefficient to increase the clearance of protein-bound solutes.
Clinical hemodialysis systems achieve high single pass extraction of small solutes that are not bound to plasma proteins. But they clear protein-bound solutes much less effectively. This study examines the extent to which clearance of a protein-bound test solute is improved by increasing the dialyzer mass transfer area coefficient (KoA) and the dialysate flow rate (Qd). A reservoir containing t...
متن کاملContribution of residual function to removal of protein-bound solutes in hemodialysis.
BACKGROUND AND OBJECTIVES This study evaluated the contribution of residual function to the removal of solutes for which protein binding limits clearance by hemdialysis. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Solute concentrations were measured in 25 hemodialysis patients with residual urea clearances ranging from 0.1 to 6.2 ml/min per 1.73 m2. Mathematical modeling assessed the effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2012